Development of biodegradable functional coatings for food packaging

Susanne Koch^{1,2}, Daniela Collin², Sabine Amberg-Schwab², Gerhard Sextl^{1,2}

¹ Universität Würzburg, Lehrstuhl für Chemische Technologie der Materialsynthese, Röntgenring 11, 97070 Würzburg, Deutschland ² Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, 97082 Würzburg, Deutschland

Introduction

High-barrier coating materials based on ORMOCER®s (Trademark of the Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. in München) in combination with inorganic SiO_x-layers provide an excellent barrier against water vapor and oxygen. These inorganic-organic hybrid polymers are synthesized via the sol-gel process and have strong covalent bonds between the inorganic and the organic moieties. However, ORMOCER[®] materials are not adequate for the utilization as functional coatings for

biodegradable packaging as these state of the art materials exhibit a poor biodegradability. Therefore, within this contribution a new class of ORMOCER[®] coating materials was developed, which shows biodegradability and high-barrier properties. These novel hybrid materials consist of an ORMOCER[®] coating modified by the biodegradable polymers chitosan and polycaprolactone.

Therefore the coatings can be utilized for food packaging applications.

*For each sample two measurements were carried out.

Summary

• Incorporation of modified biodegradable polymers into a high-barrier ORMOCER[®] • Perpetuation of good barrier properties after insertion of biodegradable polymers • First biodegradation results are promising

О.

5.

Outlook

• Optimization of barrier behavior and biodegradability

• Development of further functional properties of the coatings

Fraunhofer-Institut für Silicatforschung ISC Neunerplatz 2, 97082 Würzburg

www.isc.fraunhofer.de

Contact:

Dr. Sabine Amberg-Schwab Daniela Collin Susanne Koch

sabine.amberg-schwab@isc.fraunhofer.de daniela.collin@isc.fraunhofer.de susanne.koch@isc.fraunhofer.de

Acknowledgement

© Fraunhofer ISC

This work has been part of the EU project DIBBIOPACK and was partially funded by a grant of Stiftung Industrieforschung (S. Koch). Additionally, the authors want to thank J. Prieschl, A. Burger and H. Bleicher for their practical support.

Literature

τυ μm

[1] S. Amberg-Schwab in S. Sakka: Handbook of Sol-Gel Science and Technology, Kluwer Academic Publisher, Massachusetts, 2005, Vol. III: 455-478.

ISC

10 μm © Fraunhofer ISC 10 μm © Fraunhofer ISC

Coating shows cracks and delamination